

Journal of Alloys and Compounds 323-324 (2001) 763-767

www.elsevier.com/locate/jallcom

Stark level structure and oscillator strengths of Nd³⁺ ion in different fluoride single crystals

I.R. Martín^{a,*}, Y. Guyot^b, M.F. Joubert^b, R.Yu. Abdulsabirov^c, S.L. Korableva^c, V.V. Semashko^c

^aDepartamento de Física Fundamental y Experimental, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain

^bLaboratoire de Physico–Chimie des Matériaux Luminescents. UMR CNRS N° 5620, Université de Lyon 1, 43 boulevard 11 Novembre 1918, 6922 Villeurbanne Cedex, France

^cLaboratory of Quantum Electronics and Radiospectroscopy, Kazan State University, 18 Kremlin Street, 420008 Kazan, Russia

Abstract

Optical properties of three fluoride single crystals (YF₃, LiLuF₄ and KY₃F₁₀) doped with Nd³⁺ ions have been studied. Low temperature absorption spectra lead to the Stark energy level scheme up to 29 000 cm⁻¹. From room temperature absorption measurements and using the Judd–Ofelt theory, the Ω_2 , Ω_4 and Ω_6 parameters have been obtained in the LiLuF₄:Nd³⁺ and KY₃F₁₀:Nd³⁺ crystals and radiative lifetimes have been calculated. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Light absorption and reflection; Luminescence; Optical properties

1. Introduction

Recently there has been considerable progress in the development of up-conversion lasers based on rare earth doped materials [1]. It has been shown for the Nd^{3+} ions that the operation of up-conversion laser in the blue to ultraviolet (UV) spectral regions depends strongly on the crystal host [2,3]. It is therefore important to understand the factors determining the lifetimes of the ${}^{2}P_{3/2}$ and ${}^{4}D_{3/2}$ upper states of the $4f^{n}$ configuration of Nd³⁺ incorporated in different surroundings. These emitting levels of the Nd³⁺ ions have rather small energy gaps to the levels below them and the low phonon frequencies of the fluorides result in good quantum efficiencies for blue or near UV luminescence from these levels. ${}^{4}F_{3/2}$ is also an important energy level to investigate as it can serve as population reservoir for different scheme of up-conversion pumping and because it is a well known starting level for infrared (IR) stimulated emissions.

In this work the optical properties of the Nd³⁺ ions have been studied in three fluoride single crystals (YF₃, LiLuF₄ and KY₃F₁₀). Raman spectra have been done to estimate the highest vibrational frequency in each host. Judd–Ofelt parameters were derived from the absorption spectra and used to calculate the radiative lifetimes of the ${}^{4}F_{3/2}$, ${}^{4}D_{3/2}$ and ${}^{2}P_{3/2}$ levels in the different crystals. Moreover, the absorption spectra obtained at liquid helium temperature permit to obtain the energy level schemes for the Stark components of the Nd³⁺ manifolds in these crystals.

2. Experimental

The samples studied $(YF_3:Nd^{3+}, LiLuF_4:Nd^{3+} and KY_3F_{10}:Nd^{3+})$ were grown from carbon crucibles using the Stockbarger method. As determined by electron beam micro-probe analysis, the Nd³⁺ concentration is 4.13 10¹⁹ at cm⁻³ (0.29 at.%) in Nd:LiLuF₄ (refractive index 1.468, thickness 0.304 cm with the crystallographic c axis perpendicular to this thickness) and 2.37 10²⁰ at cm⁻³ (1.51 at.%) in Nd:KY_3F_{10} (refractive index 1.4712 and thickness 0.359 cm). The Nd:YF₃ crystal is too small for the concentration to be measured but 1% of Nd was introduced during the growth; it is also too small to be oriented and cut along the crystallographic directions, so we did not record polarized spectra with it.

Absorption spectra in the range from 200 to 900 nm were recorded using a Cary 2300 Varian Spectrophotometer equipped with a continuous flow helium refrigerator. Experimental fluorescence decays were measured under pulsed laser excitation at 355 nm (for the ${}^{4}D_{3/2}$ and ${}^{2}P_{3/2}$ decays) or at 733 nm (for the ${}^{4}F_{3/2}$ decays). Raman spectra

^{*}Corresponding author.

٠,٠

were performed using an Ar^+ laser and a Dilor XY triple spectrometer.

3. Results and discussion

The absorption spectra of the YF₃:Nd³⁺, LiLuF₄:Nd³⁺ and KY₃F₁₀:Nd³⁺ crystals have been measured in the 200–900 nm range at liquid helium temperature and at room temperature. As example, Fig. 1 presents the room temperature absorption spectrum obtained with the KY₃F₁₀:Nd³⁺ crystal. The transitions observed correspond to 4f³ \rightarrow 4f³ electronic transitions of Nd³⁺ ions and they are clearly identified by comparison with the results obtained in other crystals [4,5].

From the spectra obtained with high resolution at liquid helium temperature, it has been possible to determine the position of the Stark components of the Nd³⁺ manifolds from ${}^{4}F_{3/2}$ to the near UV (see Table 1).

From the absorption spectra obtained at room temperature in the LiLuF₄:Nd³⁺ (σ and π polarized spectra) and KY₃F₁₀:Nd³⁺ crystals the oscillator strengths were calculated using the expression

$$f = \frac{mc^2}{\pi e^2 N} \frac{2.303}{d} \int \frac{\text{OD}(\lambda) \, \mathrm{d}\lambda}{\lambda^2} \tag{1}$$

where *m* and *e* are the electron mass and charge respectively, *c* is the velocity of the light, OD(λ) the optical density as a function of wavelength and *d* is the sample thickness. The oscillator strength values for the LiLuF₄:Nd³⁺ crystal have been calculated as a contribution of the values obtained in the σ and π polarized spectra $(f = 2f_{\sigma}/3 + f_{\pi}/3)$. The values obtained for the

Fig. 1. Absorption spectrum obtained at room temperature in a $KY_{3}F_{\rm 10}$ crystal doped with $Nd^{3+}.$

Transition	E (cm)			
	YF ₃	KY_3F_{10}	LiLuF ₄	
⁴ F _{3/2}	11 532	11 441	11 603	
	11 674	11 543		
${}^{4}F_{5/2} + {}^{2}H(2)_{9/2}$	12 561	12 458	12 538	
	12 566	12 465	12 545	
	12 601	12 468	12 629	
	12 671	12 571	12 635	
	12 686	12 595	12 669	
	12 696	12 650	12 731	
	12 754 12 859	12 693 12 742	12 817	
4	12 007	12 / 12	10 105	
$F_{7/2}, S_{3/2}$	13 477	13 409	13 497	
	13 587	13 513	13 522	
	13 654	12 531	13 645	
	13 697	13 583	13 651	
	13 710	13 596	13 662	
	13 740			
F _{9/2}	14 790	14 669	14 750	
	14 833	14 735	14 779	
	14 901	14 766	14 880	
	14 921	14 847	14 893	
	15 005	14 914	14 954	
2 H(2) _{11/2}	16 019	15 888	15 866	
	16 044	15 928	15 967	
	16 059	16 028	16 055	
	16 088	16 060	16 144	
	16 107			
	16 123			
G _{5/2}	17 271	17 125	17 154	
	17 336	17 169	17 266	
	17 414	17 222	17 289	
$^{2}G(1)_{7/2}$	17 455	17 339	17 407	
	17 489	17 357	$17 \ 417^{a}$	
	17 524	17 370	17 472	
	17 564	17 398	17 651	
G _{7/2}	19 133	18 997	19 056	
	19 223	19 042	19 069	
	19 242	19 108	19 175	
	19 316	19 138	19 199	
$G_{9/2} + {}^{2}K_{13/2}$	19 618	19 432	19 652	
	19 668	19 550	19 708	
	19 693	19 579	19 751°	
	19 730	19 606		
	19 755	19 677		
	20 100			
$K_{15/2}$, ${}^{2}G(1)_{9/2}$, ${}^{2}D(1)_{3/2}$, ${}^{4}G_{11/2}$	21 010 ^a	20 987	21 015	
212	21 114	21 019	21 043	
	21 211	21 072	21 054	
	21 315	21 114 ^a	21 063	
	21 397	21 215	21 213ª	
	21 547 ^a	21 292	21 270 ^a	
	21 570	21 360	21 315	

Fable 1	
Experimental energy levels for Nd ³⁺	in YF ₃ , LiLuF ₄ and KY ₃ F ₁₀ crystals

-1

-

Table 1. Continued

Transition	$E (\mathrm{cm}^{-1})$			
	YF ₃	$KY_{3}F_{10}$	LiLuF ₄	
${}^{2}K_{15/2}, {}^{2}G(1)_{9/2}, {}^{2}D(1)_{3/2}, {}^{4}G_{11/2}$	21 603	21 486	21 420	
$R_{15/2}, G(1)_{9/2}, D(1)_{3/2}, G_{11/2}$	21 645 ^a	21 596	21 434	
	21 727	21 639	21 538 ^a	
	22 087	21 713	21 545 ^a	
	22 101	21 858	21 985	
		22008^{a}	22 394 ^a	
${}^{2}\mathbf{P}_{1/2}$	23 427	23 308	23 386 ^a	
$^{2}D(1)_{5/2}$	23 745	23 716	23 738	
() 5/2	23 840	23 744	23 886	
	24 009	23 898	24 041	
		23 949 ^b		
² P _{3/2}		26 109		
${}^{4}D_{3/2}$	28 202	27 995	28 093	
572	28 257	28 096	28 197	
$^{4}D_{5/2}$	28 438	28 403	28 345	
- 5/2	28 547	28 471	28 527	
	28 641	28 545		
⁴ D _{1/2}	28 922	28 722	28 781	

^a Less accurate results (very weak lines).

oscillator strengths can be obtained as

^b This line is less intense than the three others in this ${}^{2}D(1)_{5/2}$ range.

 $LiLuF_4{:}Nd^{3+}$ and $KY_3F_{10}{:}Nd^{3+}$ crystals are presented in

The experimental oscillator strength values have been used to calculate the Ω_{λ} values corresponding to the Judd–Ofelt theory [6,7]. Using this theory the calculated

Measured and calculated oscillator strengths obtained at room temperature in a $KY_3F_{\rm 10}$ crystal doped with Nd^{3+} ions, all transitions are from the $^4I_{9/2}$ level

Transition	$\lambda(nm)$	$f_{\rm m}~(*10^{-8})$	$f_{\rm c} (*10^{-8})$
⁴ F _{3/2}	870	207.3	223.5
${}^{4}F_{5/2}^{2}, H(2)_{9/2}$	802	922.4	869.8
${}^{4}F_{7/2}, {}^{4}S_{3/2}$	746	897.3	985.9
${}^{4}F_{9/2}$	687	74.0	73.4
$^{2}\text{H}(2)_{11/2}$	627.5	18.9	20.4
${}^{4}G_{5/2}, {}^{2}G(1)_{7/2}$	585.0	1033.9	1049.1
${}^{2}\mathrm{K}_{13/2}, {}^{4}\mathrm{G}_{7/2}, {}^{4}\mathrm{G}_{9/2}$	525	730.4	530.6
${}^{2}K_{15/2}, {}^{2}G(1)_{9/2}, {}^{2}D(1)_{3/2}, {}^{4}G_{11/2}$	470	239.2	139.2
${}^{2}P_{1/2}$	429	37.0	50.6
$^{2}D(1)_{5/2}$	421	2.4	5.6
² P _{3/2}	383	7.3	4.4
${}^{4}D_{3/2}, {}^{4}D_{5/2}, {}^{4}D_{1/2}, {}^{2}I_{11/2}, {}^{2}L_{15/2}$	355	1040.6	1093.7
${}^{2}I_{13/2}, {}^{4}D_{7/2}, {}^{2}L_{17/2}$	329	203.1	*
${}^{2}\text{H}(1)_{9/2}, {}^{2}\text{D}(2)_{3/2}, {}^{2}\text{H}(1)_{11/2}, {}^{2}\text{D}(2)_{5/2}$	300	1747.0	*
${}^{2}F(2)_{5/2}, {}^{2}F(2)_{7/2}$	244	799.3	*

^{*} These UV peaks are not included in the calculation in order to get nice fits.

$$f(aJ;bJ') = \frac{8\pi^2 m\nu}{3h(2J+1)e^2 n^2} [X_{\rm DE}S_{\rm DE}(aJ;bJ') + X_{\rm DM}S_{\rm DM}(aJ;bJ')]$$
(2)

where $X_{\rm ED} = n(n^2 + 2)^2/9$, $X_{\rm MD} = n^3$, *n* is the refractive index and the strength lines, $S_{\rm ED}(aJ;bJ')$ and $S_{\rm MD}(aJ;bJ')$ are given by

$$S_{\rm DE}(aJ;bJ') = e^2 \sum_{\lambda} \Omega_{\lambda} |\langle f^n \gamma[SL] JM_J \| U^{(\lambda)} \| f^n \gamma'[S'L'] J'M_J' \rangle|^2$$
(3)

Table 2

Tables 2 and 3.

Measured and calculated oscillator strengths obtained at room temperature in a LiLuF₄ crystal doped with Nd³⁺ ions, all transitions are from the ⁴I_{9/2} level

Transition	$\lambda(\text{nm})$	$\lambda(\text{nm})$ $f_{\text{m}} (*10^{-8})$	
⁴ F _{3/2}	862.5	90.3	84.3
${}^{4}F_{5/2}^{2}, H(2)_{9/2}$	791.5	475.8	429.2
${}^{4}\mathrm{F}_{7/2}, {}^{4}\mathrm{S}_{3/2}$	740	465.1	522.2
${}^{4}F_{9/2}$	677	29.9	38.0
2 H(2) _{11/2}	627	14.5	10.3
${}^{4}G_{5/2}, {}^{2}G(1)_{7/2}$	585.5	521.9	529.4
${}^{2}K_{13/2}, {}^{4}G_{7/2}, {}^{4}G_{9/2}$	521.5	333.4	236.6
${}^{2}K_{15/2}, {}^{2}G(1)_{9/2}, {}^{2}D(1)_{3/2}, {}^{4}G_{11/2}$	478	102.1	60.7
${}^{2}P_{1/2}$	431	12.0	15.3
$^{2}D(1)_{5/2}$	no experimental	_	-
	transition		
${}^{2}P_{3/2}$	no experimental	_	-
	transition		
${}^{4}D_{3/2}, {}^{4}D_{5/2}, {}^{4}D_{1/2}, {}^{2}I_{11/2}, {}^{2}L_{15/2}$	350	348.9	380.0
${}^{2}I_{13/2}, {}^{4}D_{7/2}, {}^{2}L_{17/2}$	330	66.5	*
${}^{2}\text{H}(1)_{9/2}, {}^{2}\text{D}(2)_{3/2}, {}^{2}\text{H}(1)_{11/2}, {}^{2}\text{D}(2)_{5/2}$	295	185.8	*
${}^{2}F(2)_{5/2}, {}^{2}F(2)_{7/2}$	260	9.7	*

* These UV peaks are not included in the calculation in order to get nice fits.

Table 4 Judd–Ofelt parameters ($\times 10^{-20}$ cm²) obtained in different crystals

Crystal	$arOmega_2$	$arOmega_4$	$arOmega_6$	$arOmega_4/arOmega_6$
LiLuF ₄	1.19	1.27	4.04	0.31
$KY_{3}F_{10}$	1.37	4.16	7.56	0.55
$LiYF_4$ [9]	1.22	2.10	4.65	0.45
LiKYF ₅ [10]	0.92	3.21	4.26	0.75
$YAl_{3}(BO_{3})_{4}$ [11]	3.09	5.04	3.11	1.62

$$S_{\rm MD}(aJ;bJ') = \left[\frac{e\hbar}{2mc}\right]^2 |f^n\gamma[SL]JM_J||\vec{L} + 2\vec{S}||f^n\gamma'[S'L']J'M_J')|^2$$
(4)

It is known that the reduced matrix elements of the unit tensor $U^{(\lambda)}$ are almost insensitive to the ion environment. We have used the $U^{(\lambda)}$ parameters given in Ref. [8]. The Judd–Ofelt parameters Ω_{λ} found at least-square fitting of the experimental oscillator strength values given by Eq. (2) to the experimental ones are given in Table 4. These values are compared to those ones found in other matrices [9-11].

The well known IR laser transition, corresponding to the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition, depends only on the Ω_{4} and Ω_{6} parameters due to the reduced matrix elements of the unit tensor $U^{(\lambda=2)}$ which are equal to zero. Therefore, for a large cross-section for this transition, Ω_4 and Ω_6 are required to be as large as possible. Moreover, Ω_2 does not enter the branching ratios for the ${}^{4}F_{3/2}$ fluorescence, so these ones can be expressed in terms of the Ω_4/Ω_6 ratio [8]. In order to maximize the fluorescence intensity to ⁴I_{11/2} relatively to emission to ⁴I_{9/2}, ⁴I_{13/2} and ⁴I_{15/2}, one requires $\Omega_4 << \Omega_6$. Comparing the values presented in the Table 4, it is expected that

- the KY₃F₁₀:Nd³⁺ crystal presents the highest value for the ⁴F_{3/2}→⁴I_{11/2} stimulated emission cross section,
 the LiLuF₄:Nd³⁺ crystal presents the most favorable
- branching ratio for the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition.

The Ω_{λ} parameters found with the absorption measurements have been also used to calculate the spontaneous emission probabilities from the ${}^{4}F_{3/2}$ to the ${}^{4}I_{J}$ (J=15/2, 13/2, 11/2, 9/2) and from the ${}^{4}D_{3/2}$ and the ${}^{2}P_{3/2}$ manifolds to all the lower levels. In the Judd-Ofelt theory [6,7], the spontaneous emission probabilities between two levels are given by

Table 6

Measured and calculated lifetimes (μ s) and highest phonon values (cm⁻¹) obtained in different crystals

Crystal	$ au_{ m m}$	$ au_{ m c}$	$E_{ m phonon\ max}$
LiLuF ₄ :0.29at%Nd	495	722	500
$KY_{3}F_{10}$:1.51at%Nd	260	334	602
YF ₃	240	_	550
$LiYF_4:0.1at\%Nd$ [9]	550	538	500
LiKYF ₅ :0.3at%Nd [10]	475	558	440
YAl ₃ (BO ₃) ₄ :5.6at%Nd [11]	53	302	1300

$$A(aJ;bJ') = \frac{64\pi^4 \nu^3}{3h(2J+1)c^3} [X_{\rm DE}S_{\rm DE}(aJ;bJ') + X_{\rm DM}S_{\rm DM}(aJ;bJ')]$$
(5)

and the radiative lifetime of and excited level aJ is given by

$$\tau = \sum_{bJ'} \frac{1}{A(aJ;bJ')} \tag{6}$$

where the sum is extended over all the states at energies lower than aJ. The branching ratios for the different emissions with the same initial level are

$$\beta(A(aJ;bJ')) = \frac{A(aJ;bJ')}{\sum_{bJ'} A(aJ;bJ')}$$
(7)

In Table 5 are presented the calculated values for the spontaneous emission probabilities and branching ratios from the ${}^{4}F_{3/2}$ level in the LiLuF₄:Nd³⁺ and KY_3F_{10} :Nd³⁺ crystals. As it is expected, attending to the values of the ratio Ω_4/Ω_6 presented in Table 4, the LiLuF₄ crystal presents the highest value for the branching ratio of the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition.

The calculated values for the spontaneous emission probabilities lead to the τ_c lifetimes given in Table 6. In this table are also indicated the measured fluorescence decay time constants au_{m} as well as the highest phonon values measured in the Raman spectra. The large energy gap between ${}^{4}F_{3/2}$ and the next lower level suggests that the fact that the measured decay rate is shorter than the calculated radiative lifetime is due to energy transfers between Nd³⁺ ions. Indeed, to measure radiative lifetime of ${}^{4}F_{3/2}$, it would be necessary to have extremely low concentrated crystals thus avoiding interactions between

Table 5

Calculated spontaneous emission probabilities A (s⁻¹) and branching ratios β for the ${}^{4}F_{3/2}$ level in different crystals

Transition $\frac{\text{LiLuF}_4}{A \qquad \beta}$	LiLuF ₄	LiLuF ₄			LiYF $_4$ [9] β	LiKYF ₅ [10] β	$\operatorname{YAl}_{3}(\operatorname{BO}_{3})_{4} [11]$ β
	β	Α	β				
⁴ I _{9/2}	407.4	0.29	1066	0.36	0.33	0.392	0.49
⁴ I _{11/2}	787.0	0.57	1570	0.52	0.54	0.5	0.43
⁴ I _{13/2}	181.3	0.13	341.2	0.11	0.12	0.103	0.07
⁴ I _{15/2}	9.3	0.01	17.6	0.01	0.01	0.005	0.01

active ions. Concerning the ${}^{4}D_{3/2}$ and the ${}^{2}P_{3/2}$ manifolds, their calculated radiative lifetimes are respectively 85 µs and 675 µs in LiLuF₄:Nd³⁺, and 32 µs and 314 µs in KY₃F₁₀:Nd³⁺. Experimentally, we measured 1±0.1 µs and 19±1.9 µs for ${}^{4}D_{3/2}$ and ${}^{2}P_{3/2}$ respectively in our two crystals (LiLuF₄: 0.29 at.% Nd and KY₃F₁₀: 1.51 at.% Nd). These measured fluorescence decay times reflect energy transfers between Nd³⁺ ions as well as probably single-ion non-radiative relaxations.

4. Conclusions

This work is first an investigation of the Stark level structure of Nd³⁺ ions in the three fluoride crystals YF₃:Nd³⁺, LiLuF₄:Nd³⁺ and KY₃F₁₀:Nd³⁺; it is complementary to preliminary results related essentially to the ⁴I term and the ⁴F_{3/2} manifold [8]. Raman spectra and Judd–Ofelt analysis of room temperature absorption spectra reveal interesting properties for the LiLuF₄ host: low phonon cutoff and high branching ratio for the ⁴F_{3/2} →⁴I_{11/2} transition.

Acknowledgements

This work was partially supported by the INTAS program (contract number INTAS-97-787), 'Gobierno

Autónomo de Canarias (PI1999/100)' and 'Comisión Interministerial de Ciencia y Tecnología (PB98-0437)'.

References

- [1] R. Scheps, Prog. Quant. Electr. 20 (1996) 271.
- [2] R.M. Macfarlane, F. Tong, A.J. Silversmith, W. Lenth, Appl. Phys. Lett. 16 (1988) 1300.
- [3] W. Lenth, R.M. Macfarlane, J. Lumin. 45 (1990) 346.
- [4] A.A.S. da Gamma, F. Gilberto De Sá, P. Porcher, P. Caro, J. Chem. Phys. 75 (1981) 2385.
- [5] M.F. Joubert, B. Jacquier, C. Linares, R.M. Macfarlane, J. Lumin. 47 (1991) 269.
- [6] B.R. Judd, Phys. Rev. 127 (1962) 750.
- [7] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511.
- [8] A.A. Kaminskii, in: M.J. Weber (Ed.), Crystalline Lasers: Physical Processes and Operating Schemes, CRC Press, 1996.
- [9] C. Li, Y. Guyot, C. Linarè s, R. Moncorgé, M.F. Joubert, in: A.A. Pinto, T.Y. Fan (Eds.), Osa Proceedings On Advanced Solid State Lasers, Vol. 15, 1993, pp. 91–95, New Orleans.
- [10] A.A. Kaminskii et al., Phys. Stat. Solidi (a) 145 (1994) 177.
- [11] D. Jaque, J. Capmany, Z.D. Luo, J. García Solé, J. Phys.: Cond. Matter 9 (1997) 9715, D Jaque. Ph.D. Thesis. Universidad Autónoma de Madrid. 1999.